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Abstract

We describe a recurrent neural network and hidden semi
Markov model (HSMM) approach to detect heart murmurs
in phonocardiogram recordings. This model forms the
winning ‘CUED Acoustics’ entry to the 2022 George B.
Moody PhysioNet challenge.

Segmentation of the phonocardiogram is a key pre-
processing step for many heart sound algorithms. How-
ever, most previous work assumes that heart sound record-
ings only contain S1 and S2 sounds, leading to poorer seg-
mentations of signals that contain a strong murmur. Our
approach applies multiple HSMMs, each making different
assumptions about a possible murmur, to produce multiple
segmentations of the signal. We then compare the confi-
dence of each HSMM’s output to produce both a murmur
classification and robust segmentation.

Evaluated on the hidden test set, our algorithm achieved
a weighted accuracy score of 0.776 on the murmur detec-
tion task (ranked 2nd of 40 teams, and just 0.004 below
the top score). On the clinical outcomes task, the algo-
rithm achieved a challenge cost score of 11144 (ranked 1st
of 40 teams). The high performance on both tasks suggests
the algorithm is sensitive to clinically significant murmurs.
Compared to end-to-end models, the algorithm also pro-
vides interpretable results about their location and timing.
This makes it a promising tool for symptomatic screening.

1. Introduction

Listening to the chest with a stethoscope (auscultation)
is a quick and non-invasive method to screen for cardiac
abnormalities. However, auscultation proficiency amongst
clinicians varies widely. The sensitivity of a general prac-
titioner in detecting valvular heart disease can be as low
as 44% [1]. Automated analysis of heart sound recordings
(phonocardiograms) is a promising solution to improve the
consistency and accessibility of auscultation. The George
B. Moody PhysioNet Challenge 2022 [2] tasked partici-
pants to design algorithms to detect heart murmurs and
predict clinical outcomes in a new paediatric dataset [3].

2. Methods

A key conclusion of the 2016 PhysioNet challenge on
heart sound classification was that feature extraction can be
the ‘most crucial and important part’ of the algorithm [4].
One of the most common feature extraction steps is seg-
mentation, where the start and end of the individual sounds
in a phonocardiogram are labelled. This allows the reduc-
tion of information from many periodic heartbeats into a
fixed-length feature vector for a subsequent classifier.

Previous state-of-the-art segmentation algorithms such
as the work of Springer [5], used to segment recordings
in both the 2016 and 2022 challenge datasets, assume a
healthy heart sound cycle, which make them susceptible to
errors when structural heart disease leads to loud murmurs
and weaker S1 or S2 sounds.

The most innovative part of our approach is a seg-
mentation algorithm that localises both healthy S1 and
S2 sounds and abnormal murmurs, removing the need
for a subsequent classification algorithm. The algorithm,
developed from Kay [6], uses a recurrent neural net-
work (RNN) to provide observations for multiple hidden
semi-Markov models (HSMMs). One of the HSMMs as-
sumes a healthy phonocardiogram whilst the others ex-
pect differently-timed systolic murmurs. We then compare
the output segmentations to determine a final segmentation
and murmur classification.

2.1. Feature Extraction

Each phonocardiogram is first normalised by removing
its mean and dividing by the resulting peak amplitude. The
log-spectrogram of the signal is then calculated using a
Hann window, with length 50 ms and step 20 ms. This
gives an effective frequency resolution of 20 Hz and a fea-
ture sample rate of 50 Hz, which has been found to be an
acceptable trade-off for both segmentation and classifica-
tion. We crop the spectrogram to the 0-800 Hz range to
remove higher frequencies that contain no heart sound in-
formation. Each frequency row of the spectrogram is then
individually z-score normalised, to further reduce the dy-
namic range between murmurs and the S1 and S2 sounds.
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Figure 1. Generation of neural network state predictions
for a murmur signal. A phonocardiogram (top) is trans-
formed to a normalised spectrogram (middle) that is input
into an RNN that predicts heart sound states (bottom).

2.2. Recurrent Neural Network

The distinct heart sound states of the phonocardiogram,
ξi ∈ {S1, S2, systole, diastole, murmur}, are pre-
dicted using a bidirectional RNN. The normalised spec-
trogram with T windows, x1:T , is input to a bidirectional
Gated Recurrent Unit (GRU) network with parameters θR
that predicts the state at time t, qt, with posterior output
P (qt = ξi|x1:T , θR). RNNs have been successfully ap-
plied for heart sound segmentation [7], offering improved
predictions that model inter-timestep dependencies com-
pared to a simple logistic regression or fully-connected
neural network. However, the models deployed in previ-
ous approaches predict the four states of a healthy heart
sound. Our algorithm is also trained to predict a murmur
state (see Figure 1), resulting in a five-state categorical out-
put that better captures the observed features.

A 3-layer bidirectional GRU is used, and the concate-
nated forward and backward outputs are then fed into
a 2-layer fully connected neural network with Tanh ac-
tivations. This reduces the hidden dimension to the 5-
dimension output where a softmax is applied. Dropout is
applied between both the GRU and fully-connected layers
to reduce overfitting. Table 1 gives the key parameters.

The challenge dataset [3] includes segmentation labels
denoting the start and end of the S1, systole, S2 and di-
astole sounds. To denote the start and end of the murmur
sounds, we use the murmur timing information noted by
the clinician. For example, if the recording is labelled to

Parameter Value
GRU hidden size 60
Number of GRU layers 3
Layer dropout probabilities 0.1
Fully-connected hidden sizes [60, 40]

Table 1. Hyperparameters chosen for bidirectional GRU
segmentation model.

contain an early-systolic murmur, we approximate that the
first 50% of each systole is the murmur signal. The same
logic applies for the mid and late systolic murmurs, whilst
for a holosystolic murmur the whole of each systole is la-
belled as a murmur. A future improvement could be to
replicate this labelling for the diastolic murmur signals, al-
though there are very few of these in the dataset.

The RNN is trained to predict these modified segmen-
tation labels from the extracted features, using a cross-
entropy loss with the Adam optimiser. The loss function is
inversely weighted to the frequency of each class label in
the dataset, to compensate for the fact that murmurs only
appear in some systolic portions of some signals. Strat-
ified 5-fold cross validation (patients stratified according
to murmur class) is used to detect overfitting and optimise
hyperparameters.

2.3. Parallel Hidden Semi-Markov Models

The RNN predictive output could be immediately used
to detect a murmur, by taking a ‘greedy’ approach and giv-
ing a positive result if ‘murmur’ is ever the most likely
posterior state. However, signal noise can impact the pre-
dictions of the murmur state and would lead to false pos-
itives. Instead, we apply HSMMs to consider the whole
signal when computing a murmur prediction.

The RNN predictions are used as observation probabil-
ities for the HSMMs, following a similar structure to the
logistic regression and HSMM of Springer [5].

The HSMM is an extension to a standard hidden Markov
model that explicitly models the duration of each state.
To create these state duration distributions, we follow
Springer [5] and first estimate the heart rate of the signal.
Springer estimates this by computing the autocorrelation
of a smoothed envelope of the heart sound and searching
for the highest peak in a specified range. In this work
we additionally compute the autocorrelation of the non-
diastolic RNN posteriors (the S1, S2, systolic and murmur
predictions summed). This leverages the predictive power
of the RNN to filter away noise and produce a smoother
autocorrelation for improved peak detection. Given the
heart rate estimate, the state duration distributions are cal-
culated as in Springer, using normal distributions for the
states with means scaled by the heart rate.

Given the RNN observations and the HSMM parameters
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(state durations and transition matrix), the segmentation
of the heart sound signal is calculated using the Springer
duration-dependent Viterbi algorithm [5]. Previous work
has used a single HSMM that assumes the signal being seg-
mented contains just the major heart sounds. Our approach
uses four parallel HSMMs that assume different classifica-
tions (ω1, . . . , ω4) of the signal:

Normal healthy signal (ω1) A four state segmentation
model with the RNN murmur posterior discarded.
Holosystolic murmur (ω2) A four state segmentation
model, where the murmur posterior replaces the systole
posterior.
Early-systolic murmur (ω3) A five state segmentation
model, where the transition matrix requires the S1 state
transition to the murmur state and then the systolic state.
Mid-systolic murmur (ω4) As above, but the model transi-
tions from S1 to systole first.

The predicted classification ω̂ is chosen by calculating a
segmentation confidence Cω for each model by tracing its
Viterbi state path, q̂(ω)

1:T , through the RNN posteriors:

Cω =
1

T

T∑
t=1

P
(
qt = q̂

(ω)
t |x1:T , θR

)
(1)

ω̂ = argmax
ω

(Cω) (2)

The maximal confidence Cω̂ is used as a measure of sig-
nal quality. To produce an overall classification for a pa-
tient based on multiple individual recordings, we follow a
simple criteria that follows what a clinician would do when
listening to multiple sites on the chest. If any of the sig-
nals are detected as a murmur (ω̂ ∈ {ω2, ω3, ω4}), then
‘Murmur Present’ is predicted. If this is not true and Cŵ

for any signal falls below a threshold (0.65), ‘Unknown’ is
predicted. Otherwise, ‘Murmur Absent’ is predicted.

2.4. Prediction of Clinical Outcome

Simply using the murmur prediction to predict abnormal
clinical outcome leads to a poor challenge score. Even us-
ing the provided ground-truth murmur label to predict clin-
ical outcome leads to a result with poor sensitivity (42%)
and a challenge cost score of 16083.

Murmurs heard at different locations on the chest have
different levels of clinical significance, and the dataset also
contains general biometrics such as age, sex and weight.
We apply a CatBoost gradient boosted decision tree [8]
to automatically combine this information to predict clin-
ical outcome. For each heart valve recording of a patient,
the HSMM confidence difference between the best mur-
mur and normal models is computed, as well as the con-
fidence Cω̂ of the chosen model. Where chest locations
have multiple recordings, these values are averaged. We

Training Validation Test Ranking
0.817 0.758 0.776 2/40

Table 2. Challenge weighted accuracy for the murmur
detection task, evaluated on the entire public training set,
hidden validation set (repeated scoring) and hidden test set
(one-time scoring).

Class Cases Sensitivity (%) PPV (%)
Present 179 92.7 55.0
Unknown 68 30.9 34.4
Absent 695 77.6 93.1

Table 3. Per-class sensitivity and positive predictive value
(PPV, a.k.a. precision) for the murmur detection task, eval-
uated via 5-fold cross validation on the training data.

combine this with the patient’s age, pregnancy status, and
the number of recordings to form the full feature input.

The decision tree is trained and optimised using five-
fold cross validation, with a class weight of 1.8 for the
abnormal examples and 1 for the normal examples. The
decision tree has a depth of 9, and is trained using a cross-
entropy loss. The threshold probability to decide an abnor-
mal result is then chosen to minimise the outcome cost.

3. Results

Table 2 shows the weighted murmur accuracy achieved
by the model on the training, validation, and test sets,
with Table 3 showing the per-class breakdown of cross-
validated performance on the training set. A total of 13
‘Murmur Present‘ cases were misclassified, all of which
are grade 1 systolic murmurs. Similarly, Table 4 shows
the clinical outcome scores achieved by the model on the
training, validation and test sets. On the cross-validated
training set, the model achieves a sensitivity of 84%, a
specificity of 31%, and a positive predictive value of 53%.

4. Discussion and Conclusions

Our approach won prizes in both tasks, ranking 1st in
clinical outcome and 2nd in murmur detection. The plot
of the HSMM confidence values in Figure 2 shows a gen-
erally strong separation between the murmur and normal
classes, and inspection of the classifier false positives sug-

Training Validation Test Ranking
10565 9257 11144 1/40

Table 4. Challenge cost metric scores for the clinical out-
come task, evaluated on the entire public training set, hid-
den validation set (repeated scoring), and hidden test set
(one-time scoring).
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Figure 2. Confidences in the murmur (CMURMUR = max(C2, C3, C4)) and normal (CNORMAL = C1) segmentations are
used to predict murmur likelihood (CMURMUR − CNORMAL) and a signal quality metric (max(CMURMUR, CNORMAL)),
which are plotted here for every signal in the training set. The marker type indicates the ground truth label. The dashed lines
show the thresholds which then partition the points into ‘Murmur Present’, ‘Murmur Absent’ and ‘Unknown’ predictions.

gests some borderline cases. The signal quality threshold
is less successful in separating the ‘Unknown‘ class from
the rest, but this is not unexpected because the definition
of a poor quality recording will be very different from an
algorithm and clinician perspective. Recordings with high
frequency noise or spikes may be problematic for a human
ear but are filtered out by the algorithm.

The outcomes task was challenging for many partici-
pants. The poor sensitivity of the ground-truth murmur
labels at predicting clinical outcome suggests that many
of the diseases in the dataset do not carry an audible
murmur. The heavy weighting of the cost function to-
wards sensitivity also forces algorithms to operate with a
lower specificity, which could limit their usefulness in a
widespread screening program where false positive refer-
rals will quickly overwhelm secondary care. To improve
practical usefulness, it may be pragmatic to focus designs
on predicting a certain set of cardiac diseases rather than a
general abnormality.

The use of a segmentation-based approach is in contrast
to many of the other participants who apply end-to-end
neural network models. The straightforward decision cri-
teria and murmur localisation may help a clinician interpret
the predictions, whilst the use of a simple normalised spec-
trogram feature limits overfitting and means the approach
should generalise well to future datasets. Future improve-
ments could include modelling of more murmur conditions
(late-systolic and diastolic), as well as relaxations of the
HSMM durations to better model arrhythmic signals.
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